
An Adaptive Algorithm for Modifying

Hyperellipsoidal Decision Surfaces

Patrick M. Kelly�, Don R. Hush�, James M. White��

�Department of Electrical and Computer Engineering,

University of New Mexico, Albuquerque, New Mexico 87131

��Computer Research and Applications Group C-3, MS B265,

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

The LVQ algorithm is a common method which allows a set of reference vectors for a distance

classi�er to adapt to a given training set. We have developed a similar learning algorithm, LVQ-MM,

which manipulates hyperellipsoidal cluster boundaries as opposed to reference vectors. Regions of the

input feature space are �rst enclosed by ellipsoidal decision boundaries, and then these boundaries are

iteratively modi�ed to reduce classi�cation error. Results obtained by classifying the Iris data set are

provided.

1 Introduction

The classi�er developed in this paper combines concepts from both the LVQ [1] and the RCE [2] clas-
si�cation methods. It is similar to the RCE network in that it uses a thresholded distance metric, but the
distance metric is a Mahalanobis distance [3]. This allows the classi�er to partition the pattern space into
hyperellipsoidal decision regions (giving rise to piecewise quadratic decision boundaries in overlap regions).
The learning algorithm that we develop is similar to the LVQ algorithm, except that it must adjust more
than just the positions of the reference vectors. In this respect our approach is similar to the approach in [4]
where parameters other than just the reference vectors are adjusted for the RBF network. We refer to the
learning algorithm developed in this paper as the LVQ-MM algorithm (LVQ using the Mahalanobis distance
Metric).

2 Classi�er Initialization

Our classi�er works as follows. A single class of data is represented by several hyperellipsoidal clusters.
Data falling inside of at least one hyperellipsoid is classi�ed as in-class data. A hyperellipsoid is de�ned
by a mean vector, �, a covariance matrix (symmetric and positive de�nite), �, and an e�ective radius, d.
The mean vector determines the location of the hyperellipsoid, while the covariance matrix determines its
shape and orientation. The squared Mahalanobis distance [3] is used to determine if a vector x lies inside or
outside of a given hyperellipsoid. Vectors lying inside of a hyperellipsoid satisfy:

(x � �)T��1(x� �) < d (1)

An initial clustering of the training data for each class is needed as the basis for this classi�er. There
are numerous ways in which this might be accomplished. We use the method proposed in [5] which suggests
using the k-means clustering algorithm [3] followed by a cluster merging process. After clusters have been
initialized in this way, e�ective radii are selected for each cluster in the set. We choose the e�ective radius
d for each cluster so that under the assumption that the data is gaussian in nature, P% of the data will

1

fall inside the boundary (typically P=99%). For an N -dimensional problem, the distribution of the squared
Mahalanobis distances to each of the vectors within a given cluster is a �2 distribution with N degrees of
freedom. If pattern vectors consist of 21 features, for example, then an e�ective cluster radius of 38.9 would
cause the hyperellipsoidal boundaries to contain 99% of the data.

3 Classi�er Adaptation

After classi�er initialization, each class of data is represented by a number of hyperellipsoidal clusters
in the pattern space. An adaptive training algorithm is now employed to reduce classi�cation error in
areas of known overlap between di�erent classes. During adaptation, each hyperellipsoid in the classi�er
will maintain its original orientation, although its position and shape will be modi�ed. The algorithm that
we use is similar to the LVQ algorithm, and thus is referred to as the LVQ-MM algorithm (LVQ with the
Mahalanobis distance Metric).

Assume that we have a hyperellipsoidal decision boundary, and a new vector which we would like to
include within the in-class data region (see Figure 1). We are only going to allow the mean vector � and the
eigenvalues of the covariance matrix � to change. This means that the orientation of the cluster will remain
�xed, although its position and shape may be modi�ed. The cluster will be modi�ed in such a way that
the following are true: (1) the new point, xn, lies on the new cluster boundary; (2) the original boundary
point lying on the opposite side of the hyperellipsoid from xn remains on the cluster boundary; and (3) the
eigenvalues of � are modi�ed in such a way that the hyperellipsoid is only stretched \towards" xn.

x
New Vector

Modified Cluster

After Cluster Modification

x
Opposite Vector

New Vector
x

Original Cluster

Before Cluster Modification

x
Opposite Vector

Figure 1: Modifying a Hyperellipsoidal Boundary

The new mean vector for the cluster will lie directly between xn and the point lying opposite it on the
hyperellipsoidal boundary, and is given by:

�
n
=

1

2

"
1 +

r
d

mn

!
�+

1�

r
d

mn

!
xn

#
(2)

After computing �
n
, we need to modify �. In doing so, we are essentially going to stretch the decision

boundary towards the new point, xn. Note that if the new point lies along one of the hyperellipsoidal axes,
that only one eigenvalue for � will need to be changed. Otherwise, all (or at least several) eigenvalues will
need to be modi�ed. For simplicity, we will restrict our attention to modifying the inverse of �. Let us
decompose ��1 as follows:

��1 = M�MT (3)

where M is the orthonormal eigenvector matrix for ��1, and � is the diagonal eigenvalue matrix. To stretch
the cluster we will modify the eigenvalues of ��1, and keep the eigenvectors �xed. Thus we wish to �nd a
new inverse covariance matrix:

��1n = M���M
T (4)

where the \stretch matrix", ��, takes on the form:

�� =

2
664

1 + �1p 0 � � � 0
0 1 + �2p � � � 0
� � � � � � � � � � � �
0 � � � 0 1 + �Np

3
775 (5)

2

x
x

x

x

x

x

x
x

x
x

x

x

x

x

x
x

x

x

x

x

x

x

x
xx

x

x

x

x x
xx

x
x

xx

x

xx

x
x

x

x

x

xx

x

x

x

x

x

x

x

x
x

x

xx

x

x

x

x x

x

x

x

x

x

x

x

xx

x

x

x x

x

x

x

x
x

x

O

OO
O

O

O

OO
O O

O
O

O

O
O

O

O

O

O
O

O

O

O

x

O

In−Class Training Data

Out−Of−Class Training Data

x

x

x

x

x

x

x

O

O

O

O

O

O

Figure 2: A Two-Dimensional System Before Adaptation

The parameter p determines the total stretch, and the parameters �i determine the percentage stretch in
the direction of the ith principal component. The �i satisfy the following constraints:

0 � �i � 1;
NX
i=1

�i = 1 (6)

Our goal is to determine the parameters p and �i so that the hyperellipsoidal boundary is moved to xn:

(xn � �
n
)T��1n (xn � �

n
) = (xn � �

n
)TM���M

T (xn � �
n
) = d (7)

Let us de�ne a new vector z to be:

z = �0:5MT (xn � �
n
) (8)

The components of this vector, zi, i = 1; 2; :::;N , represent the strength of the projection of xn onto the
N principal components. With this, (7) can be rewritten as:

zT��z =
NX
i=1

z2i (1 + �ip) = d (9)

The percentages, �i, are chosen to be equal to the relative magnitude of the projection of xn onto each
of the principle components:

�i =
j zi jPN

j=1 j zj j
(10)

It is easy to verify that this choice for �i satis�es (6). Substituting (10) into (9) and solving for p we get:

p = (d�mn)

PN

i=1 j zi jPN

i=1 j zi j
3

(11)

In summary, the new inverse covariance matrix is given by (4) where the components of �� are computed
using (8), (10), and (11).

The cluster modi�cation method discussed above provides a foundation for the classi�er adaptation
algorithm. Using the cluster modi�cation technique to move clusters \toward" and \away from" training
vectors, this algorithm will attempt to minimize classi�cation error in regions of known overlap between
classes. We will restrict our attention to modifying clusters for a single class of data only. This process is
then used independently for each class of data.

3

4 The LVQ-MM Algorithm

Consider the two-dimensional problem shown in Figure 2. The classi�er has been initialized using the in-
class training data, and consists of three hyperellipsoids in the input space. Notice that based on the training
data available to the classi�er, there is no overlap in the region \below" the current hyperellipsoids. The only
conicting areas lie on the upper portion of the closed decision region. This suggests that better classi�er
performance can be achieved by allowing the decision region to include all in-class vectors lying below the
current set, and by moving the upper boundary of the classi�er to a position minimizing misclassi�cations
in that area.

A single step in the LVQ-MM algorithm will basically work as follows. Select a random vector from the
training data which is currently misclassi�ed (correctly classi�ed samples do not a�ect the classi�er train-
ing). Using the cluster adaptation equations previously derived, move one of the hyperellipsoidal boundaries
either toward or away from this vector, depending on its class membership. Note that as the cluster adap-
tation equations currently stand, this step will always cause the current vector to fall directly on the new
hyperellipsoidal boundary.

Cluster 1

Cluster 2

New Vector

. . .
Cluster 1

Cluster 2
New Vector

.

.

.

CASE 1 CASE 2

Figure 3: Selecting Desired Boundary

The question to be addressed now is, \Which of the hyperellipsoids should be modi�ed?" Consider the
two cases illustrated in Figure 3. In Case 1, we want to modify cluster 1 to include the new vector even
though the mean vector for cluster 1 is farther away from the new vector than the mean vector for cluster
2 in terms of Euclidean distance. In terms of Mahalanobis distance, however, the opposite is true. In
Case 2, on the other hand, the roles are reversed. We want to modify cluster 2 to include the new vector.
The Euclidean distance to cluster 2 is smaller than the Euclidean distance to cluster 1, and in terms of
Mahalanobis distance, cluster 1 is closer. Clearly, the cluster to be modi�ed should be the cluster whose
boundary is closest to the new vector (in terms of Euclidean distance). It can be shown that the distance
from the boundary to the new vector is given by

dist = j(1�

r
d

m
)j � kxn � �k (12)

where d is the e�ective cluster radius, and m is the squared Mahalanobis distance to the new vector. The
adaptation loop, then, works as follows.

LVQ-MM ALGORITHM

(1) Select a training vector that is misclassi�ed
(2) Determine which cluster to modify
(3) Modify mean using (2)
(4) Modify inverse covariance matrix using (4)

This algorithm is typically run for several passes through the training data.

4

5 Experimental Results

The Iris data set1 [6] was used by R. A. Fisher in 1936 to discuss the use of linear discriminant functions.
The set contains 50 four-dimensional vectors from each of three di�erent classes of owers: Iris setosa, Iris
versicolor, and Iris virginica. The Iris setosa data is linearly separable from the the other two classes, but
the Iris versicolor and Iris virginica data are not linearly separable from one another.

Since the Iris setosa data is easily separated from the other two classes of data, we directed our work
towards identifying Iris versicolor and Iris virginica data. For a given class of data (Iris versicolor or Iris
virginica) containing 50 sample vectors, 25 were selected as training vectors and the other 25 were used
as a test set to determine how well the classi�er generalizes to new data. Because discriminating between
these classes is highly dependent upon the training sets used, ten di�erent training/test sets were chosen at
random, and the results provided reect average classi�er performance.

As a basis for comparison we trained a linear classi�er to discriminate between Iris versicolor and Iris
virginica data. The perceptron learning algorithm [3] was used. The overall results of the linear classi�cation
are shown in Table 1.

Correct Incorrect
Training Data 96.0% 4.0%
Test Data 91.0% 9.0%

Table 1: Results Using the Perceptron Learning Algorithm

Using a linear classi�er for this problem seems to work fairly well. When presented with Iris setosa data,
however, the classi�er will respond as if it were presented with Iris versicolor data. We next applied our our
one-class classi�cation scheme to this data. Ignoring the Iris setosa data, we attempted to build a one-class
classi�er for each of the other two sets of data. Because the data is known to be unimodal, a single cluster
(�, �) was estimated for each class. An e�ective cluster radius (d) of 14.9 was chosen. For a four-dimensional
problem with a gaussian distribution, this e�ective radius reects a con�dence interval containing 99.5% of
the data. Given a single cluster, then, classi�cation results were computed for both the training data and
the test data. In order to improve the classi�er performance, the LVQ-MM algorithm was run using both
the in-class and out-of-class training data. The adaptation process was halted after 50 passes through the
training data.

Using the single cluster for the Iris versicolor training data (before adaptation) classi�ed nearly all of the
in-class data correctly (see Table 2). Out-of-class data (Iris virginica), however, were frequently incorrectly
classi�ed as in-class (Iris versicolor) data. Results for rejecting out-of-class data were signi�cantly improved
after the LVQ-MM algorithm was employed. After this adaptation process, only 0.4% of all training data
was classi�ed incorrectly, while 6.2% of all test data was classi�ed incorrectly. Unlike the results obtained
with the linear classi�er, all 50 vectors from the Iris setosa data were rejected by this classi�er both before
and after adaptation. Similar results were obtained using the Iris virginica classi�er (see Table 3).

Before Adaptation After Adaptation
In-Class Out-Of-Class In-Class Out-Of-Class

Training Data 100.0% 77.6% 99.6% 99.6%
Test Data 99.2% 80.4% 90.8% 96.8%

Table 2: Correct Classi�cations Using Versicolor One-Class Classi�er

The LVQ-MM learning algorithm attempts to move the decision boundary away from the out-of-class
data which it misclassi�es. The result is that more data overall is rejected when using the adapted classi�er

1We would like to acknowledge the assistance received by using the UCI Repository Of Machine Learning Databases and

Domain Theories.

5

Before Adaptation After Adaptation
In-Class Out-Of-Class In-Class Out-Of-Class

Training Data 100.0% 65.2% 93.6% 99.6%
Test Data 94.0% 65.0% 81.6% 93.6%

Table 3: Correct Classi�cations Using Virginica One-Class Classi�er

as compared to the amount of data rejected before classi�er adaptation. Table 4 shows the percentage of Iris
versicolor and Iris virginica data which was accepted and rejected by the two classi�ers. Very little data falls
into the wrong cluster, but there is a substantial amount of data that falls into both clusters before classi�er
adaptation. After adaptation, the overlap region has been greatly reduced, and as a result the number of
vectors rejected from both classi�ers has increased.

Before Adaptation After Adaptation
Right Wrong Both Rejected Right Wrong Both Rejected

Training Data 71.4% 0.0% 28.6% 0.0% 97.0% 0.0% 0.6% 2.4%
Test Data 70.0% 0.2% 26.6% 3.2% 84.4% 3.0% 1.8% 10.8%

Table 4: Overview of Data Classi�cations

The one-class classi�ers worked well in the sense that they always rejected data that was dissimilar from
the training data used for classi�er design. The Iris setosa data, which is misclassi�ed when using the
linear classi�er, is correctly classi�ed as \out-of-class data" when using the one-class classi�cation approach.
As for the discrimination capability of the classi�er, the adapted Iris versicolor one-class classi�er actually
performed better than the linear classi�er did for these data sets. The Iris virginica classi�er, on the other
hand, performed slightly worse than the linear classi�er.

6 Conclusions

Statistical methods of pattern recognition have been used extensively for many years. Using the method
presented in this paper decision boundaries can be manipulated to reduce classi�cation error. Our method
has the combined advantage of minimizing classi�cation error between classes for which training data is
available, while at the same time rejecting patterns from other classes which are dissimilar to the training
data.

References

[1] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin, Germany, 1988.

[2] D.L. Reilly, L.N. Cooper, and C. Elbaum. A neural model for category learning. Biological Cybernetics,
45:35{41, 1982.

[3] R.O. Duda and P.E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, New York, NY, 1973.

[4] S. Lee and R. Kil. A gaussian potential function network with hierarchically self-organizing learning.
Neural Networks, 4:207{224, 1991.

[5] P.M. Kelly. A One-Class Classi�er Using Hyperellipsoidal Decision Surfaces. Masters Thesis, University
of New Mexico, 1991.

[6] R.A. Fisher. The use of multiplemeasurements in taxonomic problems. Annals of Eugenics, 7(2):179{188,
1936.

6

